Organisation of the mouse sinoatrial node: structure and expression of HCN channels.
نویسندگان
چکیده
OBJECTIVE To reveal the structural characteristics of the sinoatrial node (SAN) and the distribution of hyperpolarization-activated cyclic nucleotide-gated cation channels (HCN) in the SAN in the mouse. METHODS The structure of the SAN and the distribution of HCN channels in the SAN in the mouse were studied by histology and immunolabelling of ANP, Cx43 and HCN channels. RESULTS The mouse SAN is a comma-shaped structure with a length of approximately 1.5 mm parallel to the crista terminalis and is separated from atrial muscle by connective tissue at the border both with the crista terminalis and the atrial septum. A unique compact nodal structure with densely-packed nodal cells was identified at the head of the comma-shaped SAN. Cell size and fibre orientation vary regionally in the SAN: the cells in the compact node are small and are orientated perpendicular to the crista terminalis, whereas the cells in the more inferior part are larger and more loosely-packed and are orientated parallel to the crista terminalis. All SAN cells exhibited labelling of HCN4, but no cell exhibited detectable labelling of HCN1, HCN2, ANP and Cx43, while surrounding atrial cells exhibited labelling of ANP and Cx43, but not HCN1, HCN2 and HCN4. A specialised interface between the SAN and surrounding atrial muscle was also identified: strands of HCN4-positive nodal cells protrude into the atrial muscle and strands of Cx43-positive atrial cells protrude into the SAN; thus, there are interdigitations between the SAN and atrial muscle. CONCLUSIONS In the mouse, (i) the SAN is structurally complex with a densely-packed head and loosely-packed tail; (ii) HCN4 is the only HCN isoform detectable and is present throughout the SAN; and (iii) there is a specialised interface between the SAN and surrounding atrium that may be necessary for the SAN to drive the more hyperpolarized atrial muscle.
منابع مشابه
P 44: The Role of HCN Channels in T Cell Function
Ion channels play a major role in the regulation of T cell function in health and disease. In a computer-based model, established to simulate T cells’ membrane potential (VM) generation, we discovered a discrepancy between the simulation and patch-clamp recordings. The predicted VM was more hyperpolarized than the measured VM, indicating that a yet unknown, depolarizing ion current might ...
متن کاملSupraventricular pacemaker activity in the canine heart: contributions from HCN channels in control conditions and in a model of heart failure.
An interesting and clearly presented paper from the Nattel Research Group [1] in this volume of Cardiovascular Research provides new evidence for the expression of three isoforms of hyperpolarization-activated cyclic nucleotidegated ion channels (HCN) in the sinoatrial node and atria of the adult canine heart. These measurements have been made under control conditions, and in the setting of a m...
متن کاملPhosphodiesterases 3 and 4 Differentially Regulate the Funny Current, If, in Mouse Sinoatrial Node Myocytes
Cardiac pacemaking, at rest and during the sympathetic fight-or-flight response, depends on cAMP (3',5'-cyclic adenosine monophosphate) signaling in sinoatrial node myocytes (SAMs). The cardiac "funny current" (If) is among the cAMP-sensitive effectors that drive pacemaking in SAMs. If is produced by hyperpolarization-activated, cyclic nucleotide-sensitive (HCN) channels. Voltage-dependent gati...
متن کاملReduced expression of HCN channels in the sinoatrial node of streptozotocin-induced diabetic rats.
Diabetes mellitus (DM) is associated with an electrical remodeling of the heart, increasing the risk of arrhythmias. However, knowledge of electrical remodeling in the sinoatrial node (SAN) by DM is limited. We investigated the expression of HCN channel isoforms, HCN1-HCN4, in SAN from streptozotocin (STZ)-induced diabetic rats and the age-matched controls. We found that the STZ-induced diabeti...
متن کاملBradycardic and proarrhythmic properties of sinus node inhibitors.
Sinus node inhibitors reduce the heart rate presumably by blocking the pacemaker current If in the cardiac conduction system. This pacemaker current is carried by four hyperpolarization-activated, cyclic nucleotide-gated cation (HCN) channels. We tested the potential subtype-specificity of the sinus node inhibitors cilobradine, ivabradine, and zatebradine using cloned HCN channels. All three su...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cardiovascular research
دوره 73 4 شماره
صفحات -
تاریخ انتشار 2007